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Background: Adipogenesis contributes to the increase in adipose tissue mass.
Results: Preadipocytes treated with piceatannol showed reduced adipogenesis with impairment of the early cell cycle progress
and insulin-signaling pathway.
Conclusion:The anti-adipogenic function of piceatannol is through inhibition ofmitotic clonal expansion and insulin receptor
activity in the early phase of adipogenesis.
Significance: Piceatannol is a novel anti-adipogenic compound that could modulate development of adipose tissue.

Piceatannol, a natural stilbene, is an analog and a metabolite
of resveratrol. Despite a well documented health benefit of res-
veratrol in intervention of the development of obesity, the role
of piceatannol in the development of adipose tissue and related
diseases is unknown. Here, we sought to determine the function
of piceatannol in adipogenesis and elucidate the underlying
mechanism. We show that piceatannol inhibits adipogenesis of
3T3-L1 preadipocytes in a dose-dependent manner at noncyto-
toxic concentrations. This anti-adipogenic property of picea-
tannol was largely limited to the early event of adipogenesis. In
the early phase of adipogenesis, piceatannol-treated preadi-
pocytes displayed a delayed cell cycle entry into G2/M phase at
24 h after initiation of adipogenesis. Furthermore, the piceatan-
nol-suppressed mitotic clonal expansion was accompanied by
reduced activation of the insulin-signaling pathway. Piceatan-
nol dose-dependently inhibited differentiation mixture-in-
duced phosphorylation of insulin receptor (IR)/insulin receptor
substrate-1 (IRS-1)/Akt pathway in the early phase of adipogen-
esis. Moreover, we showed that piceatannol is an inhibitor of IR
kinase activity and phosphatidylinositol 3-kinase (PI3K). Our
kinetics study of IR further identified aKm value for ATP of 57.8
�M and a Ki value for piceatannol of 28.9 �M. We also showed
that piceatannol directly binds to IR and inhibits IR kinase activ-
ity in a mixed noncompetitive manner to ATP, through which
piceatannol appears to inhibit adipogenesis. Taken together,
our study reveals an anti-adipogenic function of piceatannol

and highlights IR and its downstream insulin signaling as novel
targets for piceatannol in the early phase of adipogenesis.

Obesity is a global health concern, and it is caused by many
factors, including overnutrition and lack of physical activity.
Excess storage of lipids in adipose tissue is the key feature of
obesity, which is associated with type 2 diabetes and cardiovas-
cular disease (1). Both adipocytes hyperplasia and adipocytes
hypertrophy are determinant factors for adiposemass increase.
Adipogenesis is responsible for adipocyte hyperplasia, and it
also contributes to a compensatory replacement of adipocyte
loss due to an active adipocyte turnover in adipose tissue in
adult humans (2). The molecular and cellular process of adipo-
genesis has been extensively characterized using preadipocyte
clonal cell lines (e.g. 3T3-L1 and 3T3-F442A) (3, 4). Adipogen-
esis requires a concerted transcriptional and cellular program,
including growth arrest of confluent preadipocytes, reentry to
the cell cycle for an additional two rounds of division, termed
mitotic clonal expansion (MCE),2 and the initiation of tran-
scriptional events in the early and late phases of differentiation
(3). Among factors promoting adipogenesis, adipogenic tran-
scription factors such as CCAAT/enhancer-binding protein �
(C/EBP�), peroxisome proliferator-activated receptor �
(PPAR�), and C/EBP�, and cellular signaling cascades involved
in cell cycle and insulin-dependent signaling pathways in the
early phase of adipogenesis are known to play critical roles (4,
5). In particular, insulin- and insulin-like growth factor-1 (IGF-

* This work was supported in part by a Purdue Research Foundation grant (to
K. H. K.) and in part by National Research Foundation and Ministry of Edu-
cation, Science, and Technology, Republic of Korea, Leap Research Pro-
gram Grants 2010-0029233 and 2009-0067326 (to K. W. L.).

1 To whom correspondence should be addressed: Dept. of Food Science, Pur-
due University, West Lafayette, IN 47907. Tel.: 765-496-2330; Fax: 765-494-
7953; E-mail: keehong@purdue.edu.

2 The abbreviations used are: MCE, mitotic clonal expansion; C/EBP, CCAAT/
enhancer-binding protein; PPAR�, peroxisome proliferator-activated
receptor �; IR, insulin receptor; Syk, spleen tyrosine kinase; NF-�B, nuclear
factor-�B; DMI, dexamethasone, 3-isobutyl-1-methylxanthine, insulin;
CARS, multimodal coherent anti-Stokes Raman scattering; MTT, 3-(4,5-di-
methylthiazol-2-yl)-2,5-diphenyltetrazolium bromide.

THE JOURNAL OF BIOLOGICAL CHEMISTRY VOL. 287, NO. 14, pp. 11566 –11578, March 30, 2012
© 2012 by The American Society for Biochemistry and Molecular Biology, Inc. Published in the U.S.A.

11566 JOURNAL OF BIOLOGICAL CHEMISTRY VOLUME 287 • NUMBER 14 • MARCH 30, 2012



1)-activated PI3K/Akt pathway and themitogen-activated pro-
tein kinase/extracellular signal-regulated kinase (MAPK/ERK)
pathway are known to play a key role in adipogenesis (6–10).
This appears to be through sensing cell cycle progression in
MCE and phosphorylation of transcriptional activation of
C/EBP� for its subsequent transcriptional activation of PPAR�
and C/EBP� (11–13). Disruption of the insulin receptor (IR)
gene in vitro and in vivo resulted in impaired adipogenesis and
adipose development, respectively (14, 15). Ablation of insulin
receptor substrate-1 (IRS-1) and IRS-3 or inactivation of PI3K/
Akt pathways inhibited adipogenesis (16, 17).
Piceatannol (trans-3,4,3�,5�-tetrahydroxystilbene) is a natu-

ral polyphenolic stilbene present in grapes, red wine (18), and
Euphorbia lagascae seeds (19). It is suggested to have anti-can-
cer and anti-inflammatory properties (20–22), and this benefi-
cial impact may stem from its inhibitory effects on various
kinase activities, including spleen tyrosine kinase (Syk) and
PI3K, and nuclear factor-�B-mediated gene expression (22, 23).
Piceatannol is a natural analog and a metabolite of resveratrol
having an extra hydroxyl group at the 3� position. Increasing
evidence implicates a health-promoting and therapeutic effect
of resveratrol on aging and chronic diseases such as obesity (24,
25). However, poor bioavailability and rapid metabolism limit
the use of resveratrol in dietary intervention for these diseases.
This posits that hydroxylated resveratrol metabolites, such as
piceatannol, may be an alternative to resveratrol for a benefit to
the health. However, the potential role of piceatannol in adi-
pose tissue development and obesity and its underlying mech-
anisms have not yet been studied.
In this study, we have investigated a potential role of picea-

tannol in regulating adipogenesis of 3T3-L1 preadipocytes.We
show that piceatannol inhibits adipogenesis with no effect on
the viability of the differentiating preadipocytes. This anti-adi-
pogenic function targets the MCE phase, where piceatannol
suppresses cell cycle progression and expression of pro-adipo-
genic transcription factors, C/EBP�, PPAR�, and C/EBP�. The
piceatannol-associated blockage ofMCE phase is accompanied
by an inhibition of phosphorylation and kinase activity of IR
and its mediated PI3K/Akt signaling pathway. Moreover, our
pulldown assay using piceatannol-conjugated beads elucidates
that piceatannol directly binds to IR in anATP-noncompetitive
manner. Taken together, these data show that piceatannol is a
natural anti-adipogenic small molecule that inhibits MCE
phase and IR-mediated insulin-signaling pathway in the early
phase of adipogenesis.

EXPERIMENTAL PROCEDURES

Materials and Reagents—Piceatannol was purchased from
Alexis Biochemicals (Lausen, Switzerland). Dexamethasone,
3-isobutyl-1-methylxanthine, insulin, propidium iodide, and
RNase Awere obtained from Sigma. Fetal calf serum (FCS) and
fetal bovine serum (FBS) were purchased from PAA (Dart-
mouth, MA). Dulbecco’s modified Eagle’s medium (DMEM),
penicillin/streptomycin, sodium pyruvate, TRIzol� reagent,
and SuperScriptII kit were obtained from Invitrogen. 3-(4,5-
Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT)
was purchased from Alfa Aesar (Ward Hill, MA). Protein assay
kit was obtained from Bio-Rad. Antibodies against C/EBP�,

C/EBP�, phospho-IR� (Tyr(P)-1146), and phospho-ERK1/2
were obtained from Cell Signaling Biotechnology (Beverly,
MA). Antibodies against phospho-Akt (Ser(P)-473) and Akt
were purchased from Epitomics (Burlingame, CA). Antibody
against phosphotyrosine was purchased from MP Biomedicals
(Solon, OH). Antibodies against PPAR�, His probe (H-3),�-ac-
tin, and rabbit and mouse secondary were purchased from
Santa Cruz Biotechnology (Santa Cruz, CA). [�-32P]ATP and
CNBr-Sepharose 4B were obtained from Amersham Biosci-
ences. PI3K (a complex ofN-terminalHis6-tagged recombinant
human p110� and untagged recombinant human p85�) and IR
active protein (N-terminal His6-tagged recombinant human
protein with residues 1005–1310) were purchased from Milli-
pore (Billerica, MA), and IRS-1-derived peptide was obtained
from Anaspec (Fremont, CA).
Cell Culture and Differentiation—3T3-L1 preadipocytes

were obtained from American Type Culture Collection and
maintained inDMEMcontaining 10% (v/v) FCS in a humidified
atmosphere of 5% CO2 at 37 °C. The cells were induced to dif-
ferentiate on reaching 2-day postconfluency (designated as day
0) by supplementation of standard adipogenic mixture, includ-
ing 5�Mdexamethasone, 0.5mM 3-isobutyl-1-methylxanthine,
and 167 nM insulin (DMI) in 10% FBS/DMEM for 2 days. The
medium was changed to 10% FBS/DMEM containing insulin
on day 2 and to 10% FBS/DMEM on day 4. On day 6, cells were
subjected to Oil Red O staining to visualize accumulated lipid
droplets in the cells. Intracellular lipid content was quantified
by extractingOil RedO by isopropyl alcohol andmeasuring the
absorbance at 490 nm by a spectrophotometer.
Multimodal Coherent Anti-Stokes Raman Scattering (CARS)

Microscope—A multimodal microscope capable of simultane-
ous CARS and two-photon excitation fluorescence imaging
analysis was performed as described previously (26). Briefly, for
CARS imaging of lipid droplets in adipocytes, the wave number
difference between the pump laser and Stokes laser tuned to
2840 cm�1, which matches the Raman shift of the symmetric
CH2 stretch vibration in lipid molecules. Combined beams
were focused into the specimen through a 60� water immer-
sion objective with a 1.2 numerical aperture. The forward
CARS signal was collected by an air condenser (numerical aper-
ture � 0.55), transmitted through a 600/65-nm bandpass filter
and detected by a photomultiplier tube (H7422-40,
Hamamatsu, Japan). For and two-photon excitation fluores-
cence imaging of intracellular fluorescent piceatannol, the
backward signal was collected by the objective, spectrally sepa-
rated from the excitation source, transmitted through a 520/
40-nm bandpass filter, and detected by a photomultiplier tube
mounted at the back port of the microscope. The combined
pump and Stokes laser power at the specimen was kept con-
stant at 55 milliwatts. Acquisition time for each image was
1.12 s. Images were analyzed using Fluo-View software (Olym-
pus, PA).
Immunoblot Assay—The cells were cultured and treated as

indicated in each experiment and harvested by scraping in cell
lysis buffer containing Tris-HCl (100 mM (pH 8.0)), NaCl (100
mM), 0.5% Triton X-100, protease inhibitor mixture, sodium
orthovanadate (1 mM), and sodium fluoride (10 mM). Protein
concentrationwas determined protein assay kit (Bio-Rad). Pro-
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teins were separated on a SDS-polyacrylamide gel and trans-
ferred to nitrocellulose membrane. Immunoblot was per-
formed with the respective primary antibodies and horseradish
peroxidase-conjugated secondary antibodies (Santa Cruz Bio-
technology). Signals were visualized by enhanced chemilumi-
nescence kit (Pierce).
Cell Viability Assay—The cells were treated with DMI and

various concentrations of piceatannol for 48 h. Subsequent
incubation of the cells withMTT solution (0.5mg/ml) for 1 h at
37 °C allowed formation of a violet precipitate, formazan. It was
dissolved in DMSO, and the absorbance was measured at 595
nm on a microplate reader (Beckman-Coulter).
Isolation of Total RNA and Real Time Reverse Transcription

(RT)-PCR—Total RNA in the cells was extracted using TRIzol�
reagent as described in themanufacturer’s instructions. 1�g/�l
isolated total RNAwas used to synthesize cDNAbySuperScrip-
tII kit, and real time PCR was performed to amplify cDNA. For
real time PCR, cDNA was diluted and mixed with SYBR pre-
mixed Taq reaction mixture (Applied Biosystems) containing
100 ng/ml PCR primers. Reactions were performed in triplicate
for each pair of primers using StepOne real time PCR system
(Applied Biosystems). The sequences of primers used in the
reactions are as follows: C/EBP� (forward, 5�-GCA AGA GCC
GCG ACA AG-3�, and reverse, 5�-GGC TCG GGC AGC TGC
TT-3�); PPAR� (forward, 5�-CCA CCA ACT TCG GAA TCA
GCT-3�, and reverse, 5�-TTTGTGGATCCGGCAGTTAAG
A-3�); C/EBP� (forward, 5�-GCT GGA GTT GAC CAG TGA
CA-3�, and reverse, 5�-AAACCATCCTCTGGGTCTCC-3�);
�-actin (forward, 5�-TGA CGG GGT CAC CCA CAC TGT
GCCCATCTA-3�, and reverse, 5�-CTAGAAGCATTTGCG
GTG GAC GAT GGA GGG-3�).
Cell Cycle Analysis—The cells were collected at the indicated

time points after stimulation with DMI in the absence or pres-
ence of piceatannol. Harvested cells were fixed with 70% etha-
nol for 2 h on ice, washed twice with PBS, and stained with 40
�g/ml propidium iodine solution containing 500 �g/ml of
RNase A for 30 min at 37 °C. Cell cycle analysis was performed
using a Cell Lab Quanta SC flow cytometer (Beckman-Coulter)
according to the manufacturer’s manual.
PI3K Assay—In vitro kinase assays were performed as

described previously (23). Briefly, active PI3K protein (100 ng)
was incubated with different concentrations of piceatannol or
LY294002, a PI3K inhibitor, at 30 °C for 10 min. Following the
incubation with 20 �l of 0.5 mg/ml phosphatidylinositol
(Avanti Polar Lipids), the mixture was incubated with the reac-
tion buffer (100mMHEPES (pH 7.6), 50mMMgCl2, and 250�M

ATP containing 10�Ci of [�-32P]ATP) for an additional 10min
and finally with the stopping buffer (15�l of 4 NHCl and 130�l
of chloroform/methanol, 1:1). A 1% potassium oxalate-coated
silica gel plate (Merck), whichwas previously activated for 1 h at
110 °C, was used to spot the lower chloroform phase in the
mixture. Thin layer chromatography was used to separate the
resulting 32P-labeled phosphatidylinositol 3-phosphate, and
autoradiography was used to visualize the radiolabeled spots.
IR Kinase Assay—Briefly, purified active recombinant

human IR with a final concentration of 1.3 nM was incubated
with reaction buffer (8 mM MOPS (pH 7.0), 0.2 mM EDTA, 1
mM Na3VO4, 5 mM sodium-�-glycerophosphate, 500 �M syn-

thetic peptide (KKKSPGEYVNIEFG), 10 mM magnesium
acetate, and [�-33P]ATP). Mg-ATPmixture was added to initi-
ate the reaction. Following a 40-min incubation at room tem-
perature, 3% phosphoric acid solution was added to stop the
reaction. 10 �l of reactionmixture was spotted onto a P30 filter
paper. After washing three times in 75mM phosphoric acid and
once in methanol, it was dried and subjected for scintillation
counting. The ATP concentrations used in the assay were 5, 25,
45, 90, 200, and 500 �M, and the activity of IR at each ATP
concentration was determined at different concentrations of
piceatannol. All data were performed in duplicate. Michaelis-
Menten constant (Km) and maximum activity (Vmax), the half-
maximal inhibitory concentration (IC50), and the inhibitory
constant (Ki) values were determined using GraphPad Prism
software.
In Vitro Pulldown Assay—Generation of piceatannol-Sep-

harose 4B was performed as described previously (23). Briefly,
0.3 g of Sepharose 4Bwas activated in 1mMHCl andmixedwith
2mg piceatannol in the coupled solution of 0.1 M NaHCO3 and
0.5 MNaCl. Following incubation at 4 °C overnight, themixture
was transferred to 0.1 M Tris-HCl buffer (pH 8.0) and further
incubated at 4 °C overnight. The mixture was washed three
times with 0.1 M acetated (pH 4.0) buffer and 0.1 M Tris buffer
(pH 8.0), respectively, and suspended in PBS. In vitro pulldown
assay was performed as described previously (27). Briefly, His-
tagged active IR protein (0.2 �g) was incubated with piceatan-
nol-Sepharose 4B or control Sepharose 4B beads. Following the
incubation at 4 °C overnight, the beads were washed five times
with wash buffer, and protein bound to the beads was pulled
down and analyzed by immunoblotting.
ATP and Piceatannol Competition Assay—Active IR protein

(0.2�g)was incubatedwith 100�l of piceatannol-Sepharose 4B
or control Sepharose 4B beads in the presence or absence of
10 or 100 �M ATP in reaction buffer. After overnight incu-
bation at 4 °C, the protein was pulled down and analyzed by
immunoblotting.
Molecular Modeling—Insight II (Accelrys Inc, CA) was used

for the docking study and structure analysis with the crystal
coordinates of IR in complex with ATP (Protein Data Bank
accession code 1IR3) and IGF-1 receptor (IGF-1R) in complex
with MSC160919A (Protein Data Bank accession code 3LW0).
Statistical Analysis—Data are shown as means � S.E. Statis-

tical analysis was performed using SAS9.2 software. Signifi-
cance of treatment effect and interactions were determined
with one-way analysis of variance. Dunnett’s multiple compar-
ison analysis was used to determine the significant differences
between group means. p values lower than 0.05 were regarded
as statistically significant.

RESULTS

Piceatannol Inhibits Adipogenesis in 3T3-L1 Preadipocytes—
We first investigated the effect of piceatannol on the differen-
tiation of 3T3-L1 preadipocytes to adipocytes. Post-confluent
3T3-L1 preadipocytes were treated with DMI to initiate differ-
entiation. The medium was supplemented with various con-
centrations of piceatannol (0–50 �M) for 6 days. Adipogenesis
of these cells was assessed by Oil Red O staining of intracellular
lipid droplets, CARSmicroscopy, and immunoblot assay of adi-
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pogenic transcription factors. Morphologic and quantitative
analysis of intracellular lipids byOil RedO staining showed that
piceatannol-treated 3T3-L1 cells displayed a dose-dependent
inhibition of adipogenesis (Fig. 1A). The inhibitory effect of
piceatannol on adipogenesis was first noted at 25 �M, and
�80% decrease of lipid accumulation was observed at 50 �M

piceatannol (Fig. 1B). By adopting CARS microscopy, a label-
free and noninvasive microscopic imaging technique sensitive
to lipid-rich molecules both in vitro and in vivo (28–30), indi-
vidual lipid droplets accumulated in these cells were visually
analyzed. The number and size of lipid droplets accumulated in
the piceatannol-treated cells were markedly decreased com-
pared with those in differentiated control adipocytes (Fig. 1C).
Consistent with these results, protein levels of adipogenic tran-
scription factors such as PPAR� and C/EBP� in 3T3-L1 cells
treated with piceatannol at concentrations of 25 and 50 �M were
lower than those in control cells differentiated for 6 days (Fig. 1D).

A recently proposed cytotoxic effect of piceatannol in other cell
lines (31) prompted us to test a possibility that piceatannol-inhib-
ited adipogenesis could result from its cytotoxic effect in 3T3-L1
cells. To test this possibility, we examined the effect of piceatannol
on the viability of differentiating 3T3-L1 cells for 48 h by perform-
ing an MTT assay. Piceatannol (0–100 �M) displayed little effect
on the viability of differentiating 3T3-L1 cells with a maximum
20%decrease in cell viability at 100�M(Fig. 1E).Collectively, these
results suggest an anti-adipogenic property of piceatannol in vitro
without any cytotoxic effects.
Piceatannol Suppresses MCE in the Early Phase of

Adipogenesis—In an effort to understand the molecular basis
underlying piceatannol-inhibited adipogenesis, we first
attempted to identify the key phase during the adipogenic pro-
gram that ismost sensitive to anti-adipogenic function of picea-
tannol. As Fig. 2A illustrates, we divided the adipogenesis proc-
ess into early (days 0–2), intermediate (days 2–4), and late

FIGURE 1. Piceatannol inhibits adipogenesis in 3T3-L1 preadipocytes. 3T3-L1 preadipocytes were stimulated with DMI to differentiate into mature adi-
pocytes with or without various concentrations (0, 10, 25, and 50 �M) of piceatannol for 6 days. The undifferentiated preadipocytes (Undiff.), 3T3-L1 adipocytes
(Cont.), and adipocytes differentiated with piceatannol were subjected to Oil Red O staining for visualization of lipid accumulation (A). B, Oil Red O-stained lipid
droplets in these cells were extracted with isopropyl alcohol for spectrometric quantification. C, CARS image analysis was performed to visualize the intracel-
lular lipid droplets in 3T3-L1 cells differentiated in the presence or absence of piceatannol (Pic, 25 �M and 50 �M) for 6 days. The scale bar indicates 20 �m.
D, whole cell lysate was prepared from these cells to determine the expression of adipogenic marker protein PPAR� and C/EBP� by immunoblotting with their
specific antibodies. �-Actin was used as a loading control. Representative images are shown. E, post-confluent 3T3-L1 preadipocytes were incubated with DMI
and various concentrations (0 –100 �M) of piceatannol for 2 days, and the viability of these cells was assessed by MTT assay. Data are presented as means � S.E.
(**, p � 0.01), n � 3, and the experiment was repeated at least twice with similar results.
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FIGURE 2. Early stage of adipogenesis is critical for piceatannol-inhibited adipogenesis. 3T3-L1 cells were induced with DMI to differentiate to mature
adipocytes. A, 50 �M piceatannol was added at the indicated time (Treatment 1– 8) during the adipogenesis. After 6 days of differentiation, these cells were
subjected to Oil Red O staining for a quantitative (B and D) and qualitative (C and D) comparison of intracellular lipid accumulation. Representative images are
shown. E, mRNA levels of PPAR�, C/EBP�, and C/EBP� were examined in 3T3-L1 cells differentiated for 2 or 6 days in the presence or absence of 50 �M

piceatannol (Pic) by real time PCR. The signals were normalized to �-actin, an internal control, and the data were presented as relative fold of induction. Data
are presented as means � S.E. (*, p � 0.05; **, p � 0.01), n � 3.
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(days 4–6) phases (3). Fifty �M piceatannol was then given to
the differentiating cells at the indicated times of adipogenesis.
After 6 days of differentiation, these cells were subjected to a
quantification of Oil RedO staining of intracellular lipids. Con-
sistent with the result shown in Fig. 1, treatment 5 resulted in
80% inhibition of adipogenesis (Fig. 2, B and C). Moreover, the
cells in treatments 3 and 4 exhibited 65–70% decrease in lipid
accumulation to a similar extent as those in treatment 5. How-
ever, treatment 6 showed a 20% decrease in adipogenesis (Fig.
2B). In addition, the presence of piceatannol only in days 0–1
showed �50% inhibition of adipogenesis (Fig. 2D). These
results implicate that the inhibitory effect of piceatannol on
adipogenesis is primarily attributable to its inhibitory effect
during the early phase of adipogenesis. In addition, cells under
the treatments 7 and 8, which included late phase (days 4–6) of
adipogenesis, also displayed significantly reduced levels of lipid
accumulation compared with control cells, suggesting an addi-
tional role of piceatannol in regulating the terminal adipogen-
esis program presumably through modulation of lipogenesis
and/or fatmobilization. To further assess the effect of piceatan-
nol on transcriptional levels of adipogenic transcription factors
during adipogenesis, mRNA levels of C/EBP�, PPAR�, and
C/EBP�weremeasured at day 2 (the early phase) and day 6 (the
late phase) of 3T3-L1 adipocytes differentiated in the presence
or absence of 50 �M piceatannol. Real time PCR analysis
revealed dramatically decreased mRNA levels of C/EBP�,
PPAR�, and C/EBP� in piceatannol-treated cells both at days 2
and 6 compared with nontreated control cells (Fig. 2E). The
most striking inhibition was in the expression of C/EBP�, an
early adipogenic transcription factor linking the cell cycle pro-
gression in the MCE process and the subsequent initiation of
transcription of PPAR� and C/EBP� genes in the early phase of
adipogenesis. Accumulating evidence suggests a regulatory role
of piceatannol in cell cycle progression in various cell types (20,
32, 33). Because induction of additional rounds of the cell cycle
is a key feature ofMCEprogress in adipogenesis, we next exam-
ined the effect of piceatannol on cell cycle progression of
3T3-L1 preadipocytes during the MCE process. Flow cytom-
etry assay results showed that piceatannol-treated cells dis-
played a delayed cell cycle progression at both 16 and 24 h after
induction of differentiation with DMI (Fig. 3A). Approximately
50% of differentiating 3T3-L1 cells was in the S phase of the cell
cycle after 16 h of DMI treatment, whereas only 15% of piceatan-
nol-treated cells was in the S phase, and more than 80% of picea-
tannol-treated cells was in the G1 phase of the cell cycle (Fig. 3B).
This in turn resulted in 35% of DMI-treated control cells found in
G2/M phase, whereas only 10% of piceatannol-treated cells were
found to be inG2/Mphase after 24 h of treatment (Fig. 3C). Thus,
our results indicate that piceatannol impairs induction of early
adipogenic transcription factors and cell cycle programs in the
early phase of adipogenesis of 3T3-L1 cells.
Piceatannol Regulates Insulin Signaling Pathway in the Early

Phase of Adipogenesis—An immediate induction of the insulin-
signaling pathway is one of the key events in the early phase of
adipogenesis, and this occurs within several hours after treat-
ment of preadipocytes with differentiating medium containing
DMI.Moreover, a recent study suggested a potential inhibitory
role of piceatannol on PI3K activity in human aortic smooth

muscle cells (23). Thus, we questionedwhether the piceatannol
effect in adipocytes involved the regulation of the insulin-sig-
naling pathway in the early phase of adipogenesis. We first
tested the effect of piceatannol on the insulin-dependent PI3K/
Akt signaling pathway in the early phase of adipogenesis. Adi-
pogenic stimuli strongly induced phosphorylation of Akt after
30 min of stimulation with a sustained level of phosphorylation
up to 120 min (Fig. 4A). However, 50 �M piceatannol markedly
inhibited DMI treatment-induced Akt phosphorylation in
3T3-L1 cells (Fig. 4A).Moreover, almost complete inhibition of
Akt phosphorylation in DMI-treated differentiating cells was
observed by treatmentwith 25�Mpiceatannol (Fig. 4B). PI3K is
an upstream target of insulin-induced Akt phosphorylation,
and piceatannol has been reported to modulate PI3K activity
through its direct binding to PI3K in human aortic smooth
muscle cells (23). To investigate if piceatannol-inhibited Akt
phosphorylation was due to suppression of PI3K activity and
PI3K upstream regulators such as IRS-1 and IR in the early
phase of adipogenesis, we next examined the effect of piceatan-
nol onPI3K activity by performing an in vitro kinase assay in the
presence of different concentrations of piceatannol and
LY294002 (10�M), a PI3K inhibitor. Piceatannol at both 25 and
50�Mcompletely inhibited PI3K kinase activity, whereas 10�M

LY294002 resulted in a moderate inhibition of PI3K activity
(Fig. 4C). AlthoughDMI treatment resulted in phosphorylation
of both IRS-1 and IR in differentiating 3T3-L1 cells, piceatannol
at 25 and 50 �M showed significant inhibition of phosphoryla-
tion of IRS-1 and IR (Fig. 4D). In addition, we also observed that
piceatannol inhibited DMI-induced phosphorylation of
ERK1/2, an extracellular serine/threonine kinase necessary for
initiating adipogenesis (34, 35), in the early phase of adipogen-
esis but to a much lesser extent than phosphorylation of IRS-1
and IR (Fig. 4D). These results suggest that the piceatannol
plays an inhibitory role in insulin-signaling pathway in the early
phase of adipogenesis largely through modulation of insulin-
induced IR-dependent phosphorylation signaling.
Piceatannol Inhibits IR Kinase Activity and Physically Inter-

acts with IR in a Mixed Noncompetitive Manner to ATP—To
elucidate whether piceatannol modulates IR function, we next
examined the direct effect of various concentrations of picea-
tannol on IR kinase activity. Piceatannol strongly suppressed IR
kinase activity in a dose-dependent manner with 75 and 100%
inhibition at 50 and 100 �M, respectively (Fig. 5A). To further
understand how piceatannol inhibits IR activity, we studied the
kinetics of IR kinase. IR kinase activity followed saturation
kinetics when ATP concentration was varied from 5 to 500 �M

(Fig. 5B) with estimatedKm andVmax values for ATP of 57.8�M

and 1699 units/mg, respectively. We next measured IR kinase
activity at each ATP concentration with respect to various
piceatannol concentrations to analyze the binding kinetics of
piceatannol to IR. We observed an increase in Km values for
ATP with a decrease in Vmax at higher piceatannol concentra-
tions (Fig. 5C), indicating that piceatannol exhibits mixed inhi-
bition kinetics to IR kinase activity. Piceatannol inhibited IR
kinase activity with IC50 values of 23–64 �M at different ATP
concentrations (Fig. 5D). Moreover, replotting the IC50 values
obtained from Fig. 5C against ATP concentrations allowed us
to estimate the Ki value for piceatannol of 28.9 �M (Fig. 5E).
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Wenext examined the possibility that the inhibitory effect of
piceatannol on IR kinase activity is through a physical interac-
tion between this small molecule and an IR protein, and we
conducted a pulldown assay using piceatannol-conjugated Sep-
harose beads. A pulldown assay using small molecule-conju-
gated beads has been successfully employed to various studies
to elucidate direct binding between small molecules and pro-
teins (36–38). By adopting this assay, we demonstrated that IR
protein was pulled down by piceatannol-Sepharose 4B beads but
not by the Sepharose 4B beads alone. The presence of His-tagged
IR in the precipitated complex with piceatannol-Sepharose 4B
beadswas judged by immunoblot analysis using anti-His antibody
(Fig. 6A). This result demonstrates the presence of a direct regula-

tionof IRbypiceatannol throughphysical interactionbetween the
two molecules. Furthermore, the binding between piceatannol
and IRwasnot alteredby thepresenceof anexcess amountofATP
(Fig. 6B). Collectively, our results suggest that piceatannol inhibits
the acute activation of the insulin-signaling pathway in the early
phaseof adipogenesis.This is through inhibitionof tyrosinekinase
activity of IR via a physical interactionwith this protein in amixed
noncompetitive manner to ATP.

DISCUSSION

Piceatannol is a natural polyphenolic stilbene and an analog
of resveratrol. Piceatannol is synthesized in plants largely in
response to environmental stress and fungal invasion. A rela-

FIGURE 3. Cell cycle analysis of 3T3-L1 cells exposed to piceatannol during MCE process of adipogenesis. Two-day postconfluent 3T3-L1 preadipocytes
were exposed to DMI in the presence or absence of 50 �M piceatannol (Pic) to initiate adipogenesis. The cells were harvested at 16 and 24 h after initiating
differentiation and stained with propidium iodide (PI) for flow cytometric cell cycle analysis (A). The effect of piceatannol on cell cycle distribution was
presented as the percent of piceatannol-treated cells in G1, S, or G2/M phases of cell cycle compared with nontreated control cells (B). The experiment was
repeated at least twice with similar results.
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tively limited amount of piceatannol (�0.5 �g/g) rather than
resveratrol has been found in fruits such as blueberry, deer-
berry, and grapes. However, a recent study reported that a high
concentration of naturally occurring piceatannol can be seen in
fruit like passion fruit (Passiflora edulis) (39). Up to 2.2 mg/g of
piceatannol exists in freeze-dried passion fruit seed, whereas
resveratrol is detected at the concentration of 0.22mg/g.More-
over, UV irradiation has been demonstrated to produce large
amounts of piceatannol in callus of peanut (40). Piceatannol is
also found in resveratrol-treated cells when resveratrol is
metabolized by cytochrome P450 enzyme CYP1B1 (41).
Despite the well documented beneficial function of resveratrol
in chemoprevention and lowering the risk of chronic diseases,
including obesity (24, 25), the role of piceatannol in the afore-
mentioned diseases has not yet been resolved.
In this study, we demonstrate that piceatannol dose-depen-

dently inhibits adipogenesis of 3T3-L1 cells (Fig. 1).We further
pinpointed that the early phase of adipogenesis, particularly in
the first 24 h of adipogenesis, is largely responsible for the anti-
adipogenic function of piceatannol (Fig. 2, A–D). The inhibi-
tory role of piceatannol in the early phase of adipogenesis was
reflected by the reduced mRNA levels of C/EBP�, PPAR�, and
C/EBP� (Fig. 2D). Piceatannol has been shown to inhibit cell

viability and to induce apoptosis in various cell types such as
macrophages (42), prostate cancer cells (43), adrenal pheochro-
mocytoma cells (44), lymphoblasts (45), and neutrophils (46).
However, our result showed that the viability of the differenti-
ating 3T3-L1 cells was not significantly influenced by piceatan-
nol treatment up to concentration of 100 �M (Fig. 1E). This
result allowed us to eliminate the possibility that piceatannol-
induced cellular cytotoxicity is responsible for its inhibition of
adipogenesis. The pro-apoptotic property of piceatannol in
other cell types has been shown to be correlated with an induc-
tion of cell cycle arrest at the G2/M phase (18). Indeed, our cell
cycle analysis result mirrors this phenomenonwith delayed cell
cycle progression of differentiating 3T3-L1 cells by piceatannol
treatment after 24 h of DMI treatment. During the first 24 h of
adipogenesis, transient activation of insulin- and IGF-1-signal-
ing pathways coincides with expression of C/EBP� protein and
its phosphorylational activation, which are thought to be
important for further induction of adipogenic transcriptional
events (11, 12). Within several hours of insulin treatment in
differentiating 3T3-L1 preadipocytes, an immediate stimula-
tion of IR phosphorylation and its subsequent activation of the
PI3K/Akt-signaling pathway were observed in differentiating
3T3-L1 cells (7, 47). Insulin-activatedMAPK and glycogen syn-

FIGURE 4. Piceatannol inhibits DMI-induced IR/IRS-1/PI3K/Akt signaling pathway and in vitro PI3K activity. A, 2-day postconfluent 3T3-L1 preadipocytes
were stimulated with DMI in the presence or absence of piceatannol (Pic) for up to 2 h. Phosphorylation of Akt in differentiating cells treated with 50 �M

piceatannol at the indicated time (A) or different concentrations of piceatannol (25 and 50 �M) for 30 min (B) was analyzed by immunoblot analysis as described
under “Experimental Procedures” using anti-phospho-Akt (p-Akt, Ser473) and anti-Akt antibodies. C, in vitro kinase activity of PI3K was analyzed as described
under “Experimental Procedures” in the presence or absence of piceatannol (25 and 50 �M) or 10 �M LY294002. The 32P-labeled PI3-phosphate was resolved
by TLC and visualized by autoradiography. D, phosphorylated IRS-1, IR, and ERK in 3T3-L1 cells prepared in B were analyzed by immunoblot analysis by
anti-phosphotyrosine antibody (pIRS-1), anti-phospho-IR� (pIR, Tyr1146) antibody, and anti-phospho-ERK antibody, respectively. �-Actin was used as a loading
control. A representative image of three independent experiments is shown.
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thase kinase 3� during this time are further known to promote
phosphorylation of C/EBP� and its transcriptional activity
within 16 h of induction of adipogenesis (11, 12). Because the
critical role of IR in adipose development has been demon-
strated in IR-deficient mice (15), it would be reasonable to

assume that transient control of IR activity in the early phase of
adipogenesis could impact adipocyte differentiation. We then
investigated the effect of piceatannol on the IR-dependent
PI3K/Akt pathway in the early phase of adipogenesis.Our series
of immunoblot analyses showed that piceatannol inhibited

FIGURE 5. Effect of piceatannol on the kinetics of IR kinase. A, in vitro kinase activity of IR was measured in the presence or absence of various concentrations
of piceatannol (Pic). His-IR protein (50 ng) was incubated with piceatannol (25, 50, or 100 �M) at 30 °C for 10 min followed by additional 10-min incubation with
IRS-1 derived peptide and [�-32P]ATP. The radioactive incorporation onto IRS-1 was determined using a scintillation counter. (**, p � 0.01, compared with
control; ##, p � 0.01, compared with IR active). B, IR kinase activity was measured as a function of the concentration of ATP at 5, 25, 45, 90, 200, and 500 �M. The
Michaelis-Menten constant (Km) and maximum activity (Vmax) were determined as described under “Experimental Procedures.” C and D, IR kinase activity was
measured as a function of the concentration of ATP (5–500 �M) in the presence of various concentrations of piceatannol (0 – 600 �M). E, IC50 values calculated
from D was replotted against ATP concentration to determine the Ki value of piceatannol. The y-intercept of the slope in this graph represents Ki value of
piceatannol.
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insulin-stimulated phosphorylation of IR, IRS-1, and Akt. It
should be noted that a substantial inhibition of insulin-induced
Akt phosphorylation and PI3K activity was observed when dif-
ferentiating preadipocytes were exposed to even low concen-
trations of piceatannol (e.g. 25 �M) (Fig. 4, B and C). However,
25 �M piceatannol inhibited �50% of lipid accumulation (Fig.
2D) and IR kinase activity (Fig. 5, A and C). In addition, we also
observed that piceatannol inhibited DMI-induced phosphoryl-
ation of ERK1/2, which is necessary for initiating the early
phase of adipogenesis, but to a much lesser extent than phos-
phorylation of IR, IRS-1, andAkt (Fig. 4D). Although the signif-
icance of our study is to identify IR as a novel target for the
anti-adipogenic function of piceatannol, it would be possible
that the piceatannol-inhibited insulin-signaling pathway in the
early phase of adipogenesis is a combined result from the direct
inhibitory effect of piceatannol on IR as well as PI3K activities.
Supporting this notion, a low concentration of piceatannol
(0–20�M) is able to effectively inhibit Akt phosphorylation and
PI3K activity in platelet-derived growth factor-treated human
aortic smooth muscle cells. Furthermore, a study of physical
binding between piceatannol and PI3K by which piceatannol
inhibits PI3K activity has been reported (23). Although picea-
tannol is suggested to be poorly absorbed in cells, we observed
intracellular piceatannol absorbed in 3T3-L1 preadipocytes
after 24 h of treatment (data not shown). Thus, we speculate
that the piceatannol-inhibited insulin-signaling pathway in dif-
ferentiating 3T3-L1 cells is a combined result from a direct
binding of piceatannol to IR on the cell surface and possibly to
intracellular PI3K in preadipocytes, which in turn results in
effective suppression of Akt phosphorylation by piceatannol
even at lower concentrations.More studies are needed to deter-
mine how intracellular piceatannol modulates the insulin-sig-
naling pathway in the early phase of adipogenesis.
To have insights into the IR inhibition mechanism by picea-

tannol, we carried out kinetics andmodeling studies of interac-

tion between piceatannol and IR. TheKm value of IR for ATP is
57.8 �M, and this is in agreement with a previously reportedKm
value of 58 �M for ATP of IR kinase in rat adipocytes (48). Our
data clearly demonstrate that piceatannol is a mixed noncom-
petitive inhibitor to ATP, by which it results in a marked
increase in Km values and a decrease in the Vmax value of IR in
relation to increasing concentrations of piceatannol. This result
indicates that piceatannol and ATP could interact with IR at
different binding sites. Recently, it was reported that the com-
pounds of the indole alkylamine scaffold bind to IGF-1R, shar-
ing a high sequence identity of 84% in the tyrosine kinase
domainwith IR, in anATP-noncompetitivemanner (49). Based
on this finding, we simulated whether piceatannol could be
docked to the pocket separate from the ATP-binding site of the
kinase domain of IR crystal structure in its inactive conforma-
tion (49, 50). Fig. 7A shows that piceatannol and ATP-binding
sites in IR are likely to be separate but adjacent to each other.
The predicted binding mode of piceatannol is somewhat simi-
lar to that of MSC160910A (49). The hydroxyl group of picea-
tannol at the 4� position can make a hydrogen bond with the
backbone carbonyl group of Val-1060 and the hydroxyl groups
at the 3 and 5positions interactwith the side chains ofGlu-1047
and Asp-1132 via hydrogen bonds. In addition, several van der
Waals interactions exist with the hydrophobic surface formed
by Met-1051, Phe-1054, Met-1076, His-1130, and Phe-1128
(Fig. 7A). The putative piceatannol-binding site partially over-
laps the activation loop site of the kinase domain of IR in the
active conformation (Fig. 7B). Collectively, these results eluci-
date IR as an important target for the anti-adipogenic property
of piceatannol. It should be also noted that our study also pro-
vides evidence of a potential inhibitory role of piceatannol in
the late phase of adipogenesis (Fig. 2C). The presence of picea-
tannol from days 4 to 6 of adipogenesis resulted in a significant
suppression of lipid droplet accumulation in 3T3-L1 cells. Pre-
sumably, its inhibitory role in the late phase of adipogenesis is
likely to be due to modulation of either lipogenesis or lipolysis.
Although little is known about the role of piceatannol in lipid
metabolism, resveratrol has been shown to inhibit total fatty
acid and triglyceride synthesis in adipocytes (51, 52). Current
evidence also suggests a role for resveratrol in stimulating lipol-
ysis and fatty acid oxidation in adipocytes (53–55). Thus, it will
be of interest to determine the role of piceatannol in lipid syn-
thesis and hydrolysis in adipose tissue.
Piceatannol is best known as a potent inhibitor of Syk. Syk is

a 72-kDa nonreceptor tyrosine kinase with an N-terminal tan-
dem pair of Src homology 2 domains and a C-terminal catalytic
domain, which mediates immunoreceptor signaling events
involved in proliferation, differentiation, and phagocytosis of
hematopoietic cells (56). It is also reported to suppress inter-
feron�-induced tyrosine phosphorylation of signal transducers
and activator of transcription (STAT)3 and STAT5 (57), and
other serine/threonine protein kinases such as cyclic AMP-de-
pendent protein kinase, phospholipid-dependent protein
kinase C, and Ca2�-calmodulin-dependent myosin light chain
kinase (58). Interestingly, tyrosine-phosphorylated Syk was
found in the early phase of adipogenesis with itsmaximum level
at 18–24 h after induction of differentiation with dexametha-
sone and 3-isobutyl-1-methylxanthine in the absence of insulin

FIGURE 6. Piceatannol directly binds to IR. A, His-IR protein was incubated
with control-Sepharose 4B or Sepharose 4B conjugated with piceatannol (Pic)
at 4 °C overnight. IR-piceatannol-Sepharose 4B complex was pulled down by
centrifugation, and the precipitated IR was analyzed by immunoblot analysis
using anti-His antibody. B, IR protein was incubated with control-Sepharose
4B or piceatannol-Sepharose 4B in the presence of indicated concentrations
of ATP at 4 °C overnight. The IR bound to the piceatannol-Sepharose 4B beads
was pulled down by centrifugation and analyzed by immunoblot analysis
using anti-His antibody.
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in 3T3-L1 cells (59). Moreover, ectopic expression of Syk
resulted in enhanced adipogenesis in vitro (59). Given the role
of piceatannol in inhibiting diverse target kinase activities,
including Syk, it will be of interest to study the requirement of
Syk for adipogenesis and the role of piceatannol in Syk function
in the early phase of adipogenesis.
Althoughmany dietary smallmolecules are proposed to have

health benefits, poor bioavailability with low solubility in the
aqueous system generally limits the efficacy of these in physio-
logical conditions. For instance, a single intravenous dose of 10
mg/kg piceatannol in rats resulted in a decline of plasma picea-
tannol concentrations from�41 to 1�M in 6 h (60). Similarly, a
single i.v. administration of resveratrol (20 mg/kg) to rats
showedmaximum plasma concentrations of resveratrol and its
metabolites in the range from 2 to 13�M (61). However, a num-
ber of studies demonstrated that the poor bioavailability of res-
veratrol can be enhanced by various methods such as encapsu-
lation with cyclodextrin, formulation with piperine, and
incorporation of resveratrol into microparticles, liposomes,
nanocapsules, and emulsion (62). For example, oral administra-

tion of a single high dose of resveratrol (100mg/kg) inmicewith
or without piperine (10 mg/kg) supplementation resulted in a
dramatic increase in maximum plasma resveratrol concentra-
tion from 10 to 154 �M (63). Furthermore, a repeated dose of
resveratrol up to 5 g/day, which is equivalent to �85 mg/kg for
a 60-kgman, has been shown to be safe in humans (64). Because
piceatannol is often compared with resveratrol due to their
similar chemical structures, these studies underscore the
importance of the development of a novel piceatannol for-
mulation that would allow us to overcome its poor solubility
and bioavailability in vivo, thereby achieving elevated plasma
concentration of piceatannol for exerting its maximum
health benefit. However, piceatannol was reported to inhibit
its target kinases at Ki values of 3–20 �M (58, 65, 66). In line
with this, our finding of a 50% inhibition of adipogenesis at
�30 �M piceatannol and a Ki value of piceatannol for IR
activity at 28.9 �M in vitro indicates that these concentra-
tions are possibly achievable in a physiological condition
when piceatannol is administrated with improved formula-
tion and/or structural modification.

FIGURE 7. Modeling study of piceatannol binding to IR. A, hypothetical model of IR-piceatannol complex with its close-up view. Piceatannol (atomic color
with green carbons) binds to the pocket adjacent to the ATP (yellow)-binding site of IR in the inactive conformation. MSC160919A (atomic color with white
carbons) is overlaid on the model structure of the complex for comparison. The residues involved in the interactions with piceatannol are indicated. The
hydrogen bonds are depicted as dashed lines and the van der Waals interactions as ellipses. B, activation loop of the active IR. The activation loop in the active
conformation is colored in orange. Piceatannol (atomic color with green carbons) is overlaid on the active structure for comparison. C, speculated model for how
piceatannol regulates adipogenesis of 3T3-L1 preadipocytes. Piceatannol inhibits DMI-induced early cellular processes during adipogenesis. Piceatannol
attenuates mitotic clonal expansion of differentiating cells by delaying the cell cycle progression. Parallel to this, piceatannol suppresses IR-dependent
signaling pathway in the early phase of adipogenesis by a direct interaction with IR and inhibition of its kinase activity. Simultaneously, piceatannol also inhibits
PI3K activity. Collectively, these result in suppression of Akt phosphorylation and adipogenesis.
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In summary, our study suggests a new role of piceatannol in
adipogenesis through targeting the early biochemical and cel-
lular events of adipogenesis such as insulin-dependent signal-
ing pathway, MCE, and expression of early adipogenic
transcription factors (a suggested mechanism of piceatannol-
inhibited adipogenesis is summarized as a schematic in Fig. 7C).
Although we cannot rule out the possibility that piceatannol
has additional effects on adipogenesis, our finding of a direct
binding between piceatannol and IR and the inhibitory role of
piceatannol in IR tyrosine kinase activity and its subsequent
phosphorylation cascade of insulin-signaling pathway reveals a
newmechanism by which a natural polyphenolic stilbenemod-
ulates adipogenesis.
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